Sifat-sifat Eksponen Beserta Pengertian, Sifat & Contoh Soalnya

- Penulis

Kamis, 21 September 2023 - 18:41 WIB

facebook twitter whatsapp telegram line copy

URL berhasil dicopy

facebook icon twitter icon whatsapp icon telegram icon line icon copy

URL berhasil dicopy

Sifat sifat Eksponen Beserta Pengertian Sifat Contoh Soalnya

Sifat sifat Eksponen Beserta Pengertian Sifat Contoh Soalnya

Draf Eksponen sudah tidak asing lagi bagi siswa. Salah satu rumus yang diajarkan dalam bidang matematika ini adalah sifat eksponensial beragam. Untuk mengetahuinya, artikel kali ini akan membahas segala hal tentang eksponen.

Tahukah Anda kapan eksponen mulai dikenal? Metode ini pertama kali ditemukan oleh Euclid, seorang matematikawan Yunani yang dikenal sebagai bapak Geometri. Penggunaan modernnya pertama kali dilakukan oleh Michael Stifel pada tahun 1544.

Banyaknya eksponen menjadi satu metode yang sering dipilih oleh para peneliti atau ahli matematika. Apalagi jika harus menulis banyak angka 0, atau banyak angka desimal setelah 0. Angka ini juga sering digunakan dalam bidang ekonomi dan ilmu komputer.

Memahami Eksponen

Memahami Eksponen

Sederhananya, eksponen didefinisikan sebagai metode mengalikan angka yang sama berulang kali. Secara singkat dapat dikatakan bahwa pangkat adalah perkalian berulang, sedangkan jika dilihat dari bentuknya adalah an. dimana a disebut basis dan n adalah eksponen atau pangkat.

Dalam kamus KBBI, Eksponen merupakan kata yang tergolong homonim. Pasalnya, keduanya memiliki ejaan dan pengucapan yang sama, namun memiliki arti yang berbeda. Berikut Pengertian eksponen dalam kamus KBBI:

  • Eksponen didefinisikan sebagai orang yang menjelaskan atau menafsirkan suatu teori. Dimana teori tersebut mewakili dan merupakan contoh dari teori tersebut.
  • Eksponen juga diartikan sebagai orang atau tokoh utama dalam suatu gerakan atau bidang kehidupan.
  • Eksponen adalah suatu bilangan yang ditulis tepat di atas bilangan lainnya. Angka menunjukkan pangkat suatu bilangan, misalnya 2^3 yang dibaca dua pangkat 3.

Definisi eksponen cara singkat untuk menulis perkalian berulang kali. Selain itu rumus ini mempunyai bentuk yang umum.

Sifat-sifat Eksponen dan Contohnya

Properti Eksponen

Eksponen ditulis dalam bentuk a^n atau an= a×a×a×……..a. Namun, jika eksponen digunakan dalam operasi aritmatika, propertinya akan berubah. Berikut sifat-sifat eksponen dan contohnya.

1. Tambahan

Penjumlahan dilakukan jika rumus perkaliannya mempunyai basis yang sama. Agar pangkatnya ditambah maka rumusnya ditulis sebagai berikut:

AM xaN = sebuah m+n

contoh pertanyaan: 32 x 33 = 32+3 = 35 =243

2. Pengurangan

Sedangkan pangkat pengurangan berlaku pada rumus pembagian. Pangkatnya berkurang jika pembagian mempunyai basis yang sama. Maka rumusnya akan ditulis sebagai berikut.

AM : AN = sebuahM N

contoh soal :

45 : 43 = 45-3= 42 =16

3. Perkalian

Perkalian pangkat merupakan salah satu sifat eksponen yang berlaku pada bilangan yang mempunyai eksponen. Jadi pangkatnya kemudian berlipat ganda. Jadi rumusnya adalah sebagai berikut.

(AM)N = sebuahm × n

Contoh soal :

(32)2 = 32×2 = 34 = 81

4. Perkalian Bilangan Berpangkat

Rumus ini terjadi jika ada perkalian yang dipangkatkan. Sehingga setiap angka yang di perkalian dipangkatkan. maka rumusnya adalah sebagai berikut.

(a.b)M = sebuahM . BM

Contoh soal :

(2×4)2 = 22 x 32 = 4×14 = 56

5. Peringkat Jumlah Pecahan

Pada banyaknya pecahan yang dipangkatkan, pembilang dan penyebutnya harus dipangkatkan semua dengan syarat b ≠ 0. Sehingga penyebutnya tidak boleh = 0, maka rumusnya adalah sebagai berikut.

Baca Juga :  Pengertian Bilangan Cacah: Ciri-ciri, Operasi, dan Contoh Soal

ab M = ambm , b bukan 0

Contoh soal :

653 = 6353 =216215

6. Rumus Kekuatan Negatif

Rumus ini digunakan di sifat eksponensial yang mempunyai kekuatan negatif. Dimana untuk menghitung pangkatnya, nilainya adalah 1 per pangkat dari bilangan eksponennya yang menjadi positif. Rumusnya adalah sebagai berikut.a – N = 1an

Contoh soal :

3 – 3 = 133 = 127

7. Eksponen dalam Pecahan

Jika tersedia kelompok yang di-root, maka pangkat dari akar tersebut menjadi penyebut pangkat dari bilangan tersebut. Jadi rumusnya adalah sebagai berikut..

nama = amn

Contoh soal :

234 = 342 =32 = 9

8. Bilangan dengan pangkat nol (0)

Bilangan yang berpangkat nol berarti hasilnya 1, berapa pun bilangan pokoknya. Rumus ini valid asalkan bilangan pokoknya bukan 0 atau a ≠ 0. Begini cara penulisannya. A0 = 1sebuah ≠ 0

Contoh soal :

30 = 1

50 = 1

90 = 1

Persamaan Eksponensial Sederhana

Persamaan Eksponensial Sederhana

Persamaan eksponensial adalah bentuk persamaan yang didalamnya terdapat fungsi eksponensial. Bentuk persamaan ini mempunyai rumus yang bermacam-macam. Untuk mengetahuinya, berikut beberapa persamaan eksponen.

1. Rumus Pertama

Jika sebuahf(x) = 1, jadi f(x) = 0 rumus ini dapat dibuktikan dengan soal berikut:

24x-8 = 1

4x – 8 = 0

4x = 8

X = 8/4

X = 2

Maka penyelesaiannya dapat diketahui x = 2

2. Rumus Kedua

Af(x) = sebuahP , a ≠ 0 jadi f(x) = p . Berikut ini contoh soal dari rumus tersebut.

42x-4= 32

2x – 4 = 2

2x = 2 + 4

2x = 6

X = 6/2

X = 3

Jadi penyelesaian x adalah 3.

3. Rumus Ketiga

Jika sebuahf(x) = sebuahg(x) , sedangkan a ≠ 0, jadi f(x) = g(x), berikut contoh soal dari rumus tersebut.

32x-8 = 33x-6

2x – 8 = 3x – 6

2x – 3x = -6 + 8

X = -2

Hingga penyelesaian soal x adalah -2.

4. Rumus Keempat

Rumus selanjutnya berbentuk af(x) = bf(x) , dengan syarat a, b ≠ 1 selain itu a ≠ b. Jadi f(x)= 0, berikut contoh rumus diatas.

32x-4 = 22x-4

2x – 4 = 0

2x = 4

X = 2

Jadi nilai x adalah 2 pada soal di atas.

5. Rumus Kelima

Jika A(af(x))2 + B(sebuahf(x)) + C = 0, jadi untuk melengkapi rumusnya contohnya adalah p = af(x). Sebagai contoh, Anda dapat melihat pertanyaan di bawah ini.

2x-3 . 2x+2 = 0

(2X)2 – 3 . 2X + 2 = 0

Jika p = 2X menghadapi hal2 – 3p + 2 = 0 sampai (p – 2 )(p – 1)

P = 2 atau P = 1

2X = 2

X = 1

Maka solusi yang didapat adalah x adalah 1.

6. Rumus Keenam

Ketika f(x)g(x) = f(x)b(x) maka persamaan ini mempunyai 4 kemungkinan:

g(x) = b(x)

f(x) = 1

Terbalik dari Eksponen

Jika sebelumnya telah dibahas sifat eksponensial, maka Anda juga perlu mengetahui tentang kebalikan dari eksponen. Berapakah kebalikan dari eksponen? Invers didefinisikan sebagai kebalikannya, misalnya jika ada fungsi y= f(x) maka inversnya adalah y= f(x) dan f(x) = f-1(y) dan digunakan cara sebagai berikut.

Cara Menentukan Rumus Invers

Untuk mengetahui rumus invers eksponen, caranya adalah dengan mengubah bentuk y = f(x) menjadi x = f(y). Maka x adalah f-1(kamu) mata f-1(kamu) = f(y), lalu ubah variabel y menjadi x sehingga rumus invers fungsinya adalah f-1(x).

Contoh soal :

Untuk mengetahui bentuk rumus invers eksponen, berikut contoh soal yang bisa anda perhatikan. Pada pertanyaan pertama dan kedua, ubah bentuknya logaritma menjadi invers, sedangkan pada soal ketiga dan keempat ubah bentuk inversnya menjadi logaritma.^3Log81=4

  • 9 = ^3logx
  • (1/3)^x = 7
  • 8 = 3X
Baca Juga :  Inilah 7 Dokumen Penting yang Harus Dipersiapkan untuk CPNS Tahun 2024: Siapkan Dirimu dari Sekarang!

Larutan :

Berikut solusi dari contoh pertanyaan di atas:

  1. logaritma 81 pada bilangan pokok 3 maka hasilnya 4, jadi kalau 34 hasilnya 81, maka bentuk penyelesaiannya dituliskan sebagai berikut 34=81
  2. Bentuk persamaan 3=^3Logx setara dengan 33 = x
  3. Pada soal 3 persamaan 1/3logx = 7 setara dengan ^1/3log7 = x
  4. Persamaan 8 = 3X setara dengan 3log8 = x

Aplikasi Sifat-sifat Eksponen dalam hidup

Penerapan Sifat Eksponensial dalam Kehidupan

Tahukah kamu? itu alam Eksponen yang dipelajari di SMA sangat bermanfaat dalam membantu menyelesaikan permasalahan di berbagai bidang. Jadi materi ini sangat penting untuk kalian pelajari. Berikut adalah beberapa contoh penerapan eksponen.

1. Biologi

Dalam bidang biologi, eksponen sering digunakan untuk menghitung pertumbuhan bakteri. Sebagai contoh, berikut contoh masalahnya:

Amoeba dapat tumbuh dengan cepat dengan cara membelah diri, sehingga dalam waktu tertentu jumlahnya akan terus bertambah. Jadi rumus eksponensial yang digunakan adalah AT = SEBUAH0 x (2)T. A0 = 40 pada pukul 09.00. Berapa jumlah amuba pada jam 09.08?

Solusi :

A0 = jumlah amuba

t = lama pengamatan

AT = SEBUAH0 x (2)T

AT = 100x(2)8

AT = 100×256

AT = 25.600

Jadi dalam waktu 8 menit jumlah amuba menjadi 25.600

2. Ekonomi

Rumus Eksponensial juga diterapkan dalam ilmu ekonomi. Umumnya ini digunakan di perbankan untuk menghitung bunga majemuk. Berikut adalah contoh kasus penerapan eksponensial.

Jika Anda berencana mengumpulkan Rp 10.000.000 dalam 10 tahun ke depan. Berapa banyak uang yang harus Anda simpan setiap tahun jika bunga majemuk per tahun adalah 24%? Inilah solusinya.

Dalam menentukan penyelesaiannya harus menggunakan prinsip bunga majemuk yaitu y = p (1 +)mt dengan informasi berikut:

y : modal akhir

p: modal awal

r : bunga besar

m : minat ganda

t : waktu

10.000.000 = p (1 + 0,241)10

10.000.000 = (1,24)10

P = 10.000.0001,24 . 10

P = 10.000.00012,4

P = 806.451,61

Jadi jumlah uang yang harus ditabung setiap tahunnya adalah sekitar 806,45,61.

3. Sosial

Di bidang sosial, rumus eksponensial umumnya digunakan untuk menghitung pertumbuhan penduduk dalam jangka waktu tertentu. Berikut contoh penerapan rumus eksponensial dalam bidang sosial:

Misalnya saja pada tahun 2014 suatu wilayah mempunyai jumlah penduduk sekitar 286.841 jiwa. Lalu berapa perkiraan jumlah penduduk Kabupaten tersebut pada tahun 2024 jika laju pertumbuhan penduduk secara eksponensial sebesar 2,99%?

Dalam menyelesaikan kasus diatas dapat menggunakan rumus laju pertumbuhan penduduk yaitu : Pt = P0ert dengan deskripsi:

PT : Jumlah penduduk pada tahun 2024

P0 : jumlah penduduk pada tahun 2014 (286.841)

t : bertambahnya jangka waktu

r : laju pertumbuhan penduduk

e : bilangan eksponensial (2.71828182)

Solusi dari pertanyaan di atas adalah sebagai berikut:

PT= hal0ert

PT = 286.841xe0,0299×10

PT = 286.841 x 1.34850962347291

PT = 386.807,

Sifat-sifat eksponensial Bentuknya bermacam-macam yang dapat Anda pelajari sebagai bahan pelajaran di sekolah atau diterapkan pada berbagai kebutuhan. Rumus ini dapat memudahkan Anda menyederhanakan perkalian dengan kelipatan besar.

Baca Juga Artikel Lainnya:

www.ayovaksindinkeskdi.id

Berita Terkait

Pasti dari Jokowi, Tahun Depan tidak Ada Perbedaan Antara PNS dan PPPK, Semua Akan Satu Nama Menjadi ASN
Contoh Doa Penutup MPLS 2024 Dalam Bahasa Indonesia
Contoh Materi MPLS SMP Kurikulum Merdeka Tahun Anggaran 2024/2025
Implementasi Pembelajaran Sosial dan Emosional di Kelas dan Sekolah
Contoh Modul Ajar Kurikulum Merdeka PAUD-TK Terbaru 2024
6 Daftar Kegiatan Ketika MPLS Bersama Peserta Didik Baru, Jangan Sampai Terlewatkan !
Ada Perlakuan Khusus untuk PPPK 2024, Semua Guru Akan Diberi Tunjangan Lebih Hingga 3 Juta
Alhamdulillah!! Tenaga Honorer Yang Mengabdi Lebih dari 20 Tahun Akan Langsung Ditetapkan NIP Pegawai
Berita ini 4 kali dibaca

Berita Terkait

Jumat, 19 Juli 2024 - 10:42 WIB

Pasti dari Jokowi, Tahun Depan tidak Ada Perbedaan Antara PNS dan PPPK, Semua Akan Satu Nama Menjadi ASN

Jumat, 12 Juli 2024 - 21:32 WIB

Contoh Doa Penutup MPLS 2024 Dalam Bahasa Indonesia

Sabtu, 6 Juli 2024 - 11:26 WIB

Contoh Materi MPLS SMP Kurikulum Merdeka Tahun Anggaran 2024/2025

Senin, 1 Juli 2024 - 16:57 WIB

Implementasi Pembelajaran Sosial dan Emosional di Kelas dan Sekolah

Sabtu, 29 Juni 2024 - 16:30 WIB

Contoh Modul Ajar Kurikulum Merdeka PAUD-TK Terbaru 2024

Berita Terbaru